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by

David Benjamin

Submitted to the Department of Electrical Engineering and Computer Science
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Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis presents Webathena, a browser-centric implementation of the Kerberos
network authentication protocol. It consists of a JavaScript Kerberos client, paired
with a simple, untrusted, server-side proxy to wrap the protocol in HTTP. This
is used to implement a trusted credential manager with a cross-origin protocol to
delegate credentials to untrusted Web applications.

To evaluate Webathena, we present Roost, a Web-based client for the Zephyr mes-
saging and notification in use at MIT, along with a host of proof-of-concept applica-
tions. We find that it is possible to build Web-based clients for Kerberized services
similar to or better than existing native ones with no modifications to either the Ker-
beros KDCs or the services themselves. Finally, we discuss possible modifications to
Kerberos to better support this kind of credential delegation.

Thesis Supervisor: Nickolai Zeldovich
Title: Associate Professor
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Chapter 1

Introduction

In 1983, the Massachusetts Institute of Technology, along with Digital Equipment

Corporation and IBM, began Project Athena [1] to provide a campus-wide computing

environment for the Institute. At the center of Athena was Kerberos [41, 33], an au-

thentication protocol used to authenticate users to various services on MIT’s network.

These include AFS, a networked filesystem, Moira, a mailing list and group manager,

Zephyr, a notification and messaging system, and dialup machines for remote login.

In addition, MIT community members can register their own Kerberos-based services.

These services tend to be accessed with command-line clients using native Kerberos

libraries.

Today, Kerberos and other parts of Project Athena live on, but the computing

environment has changed. Applications are increasingly moving to the Web and

accessed through a browser. On the Web, low-level system access, such as access

to raw sockets, is limited. More fundamentally, browsers treat application code as

untrusted, isolating them from the system and from each other. Newer platforms have

similar models, including Android, iOS, and Windows 8. Moreover, with the advent

of cloud computing, remote servers are increasingly used to perform actions on behalf

of a user. In this environment, it is important to not only provide applications and

remote servers access to a user’s account, but also to scope and limit that access.

In parallel with Kerberos, MIT deploys Web-based services on its network. These

services primarily authenticate using TLS client certificates [10] and are separate from
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Kerberos. A native client cannot use Kerberos to authenticate to such a website, and

there is no natural way to access a Kerberos-based service from the browser. Some

Kerberos services do have Web clients, but, unlike native ones, they require special

provisions in the services themselves. For instance, WebMoira, the Web interface

to Moira, authenticates to Moira itself using a trusted superuser principal on the

backend and then reimplement authentication checks. This has historically been a

source of problems as these checks did not always match those of Moira.

Our work is motivated by the disparity between authentication on Web-based

services and that of native Kerberos ones. We believe that Web applications and

native applications should eventually converge and services should be able to treat

them equivalently. To that end, we present Webathena, an adaptation of Kerberos

to the Web. It allows Web-based access Kerberos-based services at MIT with no

modifications to the existing Kerberos infrastructure.

The Web presents several challenges to adapting a protocol like Kerberos. Low-

level networking APIs such as UDP and TCP sockets are unavailable on the Web, so

we cannot implement Kerberos directly. In addition, since applications on the Web

are expected to be isolated from each other, we must design appropriate boundaries

and security policies to decide which applications may access which services.

Webathena handles the constraints of a browser-based environment primarily by

deploying proxies which wrap existing protocols in ones available to the browser,

namely HTTP [13] and WebSockets [12]. It then provides APIs for applications to

request credentials at the service granularity, prompting the user for permission to

forward access. We implement several applications using this system, including Roost,

a fully-featured client for Zephyr, a Kerberos-based messaging system used at MIT.

Chapter 2 gives an overview of Kerberos as used today. We then discuss Weba-

thena in detail in Chapter 3. Chapter 4 describes our primary case study, Roost. We

discuss related work in Chapter 5. Chapter 6 evaluates our overall system as com-

pared to a traditional Kerberos ecosystem and discusses future work. This includes

proposed changes to the Kerberos protocol to better serve the needs of the Web and

modern platforms. Finally, Chapter 7 concludes.
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Chapter 2

Kerberos

As background for Webathena, this chapter presents a brief overview of Kerberos.

The Kerberos network authentication protocol [41] provides unified access to services

across all of Athena. It allows users to securely authenticate to servers using their

Athena credentials without sending their password over the network.

At the center of a Kerberos deployment is a central authentication server, the Key

Distribution Center (KDC). The KDC includes a database with pre-arranged shared

secrets for each user and service in the system. In the case of a user, this secret is

the user’s password. Users and services, however, do not share secrets. The goal of

the Kerberos protocol is to arrange a shared session secret between the user and the

service. This secret can then be used as part of a secure protocol between the two.

2.1 Tickets

The Kerberos protocol works using tickets. To access a particular service, the user re-

quests a ticket for that service from the KDC. This ticket can be used to authenticate

the user to that service. We describe tickets in more detail below.

The user begins by requesting access to a service from the KDC. The KDC

responds with a session key, freshly generated for the user and the service, as well as

a ticket. Tickets contain a copy of the session key and some metadata, all encrypted

with the service’s secret. Likewise, the user’s copy of the session key is encrypted
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with the user’s password. This encryption allows the the user and the service to trust

that this session key was generated by the KDC for them because no one else could

have encrypted it with their respective secrets. Tickets are timestamped and last for

a limited amount of time, usually on the order of a day.

After receiving the ticket, the client constructs an authenticator which contains

a copy of the ticket and some timestamps encrypted with the session key. This is

presented to the service. The service decrypts the ticket to learn the session key

and uses this to verify the authenticator. From there, the client and service may

communicate over some application-specific protocol.

A user may access several different services during their login session. To avoid

require they re-enter their password for each service, Kerberos introduces a special

service, the ticket-granting service (TGS). The TGS is usually a component of the

KDC. Tickets for the TGS are known as ticket-granting tickets or TGTs. The TGS

is a special service which has access to the KDC’s database can issue tickets for other

services. When a user logs in to their machine, they request a TGT and store it in a

credential cache. Then, as they need to access services, they use this TGT to acquire

service tickets without re-entering their password. Figure 2-1 shows a typical flow for

a user accessing a service with a TGT.

Kerberos also provides a ticket renewal mechanism. Tickets may be marked as

renewable and have a second renew-till expiration date. Any time before a ticket

expires, clients may request the TGT issue a new one. This new ticket has the same

renew-till time, and has the same lifetime (but newer start time) as the old ticket or

ends at the renew-till time, whichever comes earlier.

2.2 GSSAPI

Most modern protocols using Kerberos use the Generic Security Services API [29]

or GSSAPI. GSSAPI is a generalized API that may be implemented by different

authentication providers, called mechanisms. It is primarily used with the Kerberos

mechanism [44]. GSSAPI mechanisms allow applications to establish an authen-
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Figure 2-1: A sample Kerberos interaction.

ticated security context and optionally a messaging layer providing confidentiality

and/or integrity-checking.

The two primary entry points in GSSAPI are GSS Init sec context and

GSS Accept sec context. These are called by the context initiator (usually the

client) and the context acceptor (usually the service), respectively. The initiator first

calls GSS Init sec context to generate an opaque context-establishment token and

sends it to the acceptor. The acceptor passes it to GSS Accept sec context which

may return another token to be sent back to another call to GSS Init sec context.

This process repeats until the context has been established. This context may then

be used with the messaging layer.

In the case of Kerberos, the initiator’s token consists of an authenticator. If mutual

authentication has been requested, the acceptor’s response contains a re-encrypted

version of the authenticator’s timestamp. Otherwise, there is no response. After this,

both sides have an established context with a session key to be used with GSSAPI’s

messaging layer. The GSSAPI implementation abstracts away service ticket requests

and does so as-needed on calls to GSS Init sec context.
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Chapter 3

Webathena

This section details Webathena, a Kerberos client tailored for Web browsers. The

name is a play on Debathena [8], a port of MIT’s Athena computing environment to

Debian-based systems. In that vein, Webathena is a “port” of Athena to the Web.

3.1 Challenges

Adapting Kerberos to a browser environment presents several challenges. The first is

that Web content is very restricted in its access to the outside world. JavaScript code

running in a browser cannot open UDP or TCP sockets. This means that a Kerberos

implementation in the browser cannot directly speak to the KDC. We could simply

send the password to a trusted server which speaks Kerberos on the client’s behalf,

but this runs counter to Kerberos’ design goals. The user’s password should not be

stored in memory long-term or leave the network. A native Kerberos client has no

need of a trusted proxy.

The second challenge is related. Since a user may run a Web application as

easily as clicking a link in an email, the Web was forced to evolve a security model

with untrusted applications. Web applications are not only isolated from the user’s

system, but also from each other. A native application typically links in the MIT

Kerberos library which interacts directly with the user’s credentials. This would not

be acceptable for the Web, as that would allow any site the user visits to steal their
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MIT credentials.

3.2 Design

To work around networking constraints, we deploy a server-side proxy. The Kerberos

protocol uses a stateless protocol over UDP1. All interactions involve the client send-

ing a single request and receiving a single response from the KDC. This allows us

to easily wrap it in HTTP. We pair the proxy with a custom JavaScript Kerberos

client. Although this proxy handles all of Webathena’s Kerberos traffic, it never sees

the user’s password. It is only as powerful as an active network attacker, and we in-

herit the Kerberos protocol’s security properties under that threat model. Note that

this is only true of the proxy itself, and not the server hosting Webathena’s JavaScript

code. We discuss this in more detail in Chapter 6. This design is summarized in figure

3-1.

Figure 3-1: An ticket request in Webathena

To adapt Kerberos to an environment with untrusted applications, we add a

ticket delegation API for Webathena. Webathena itself acts as a trusted creden-

tials cache to manage the user’s Kerberos credentials. This is analogous to how

https://accounts.google.com/ manages a user’s Google login for other sites. We

expose an API based on postMessage [20], a cross-window communications mecha-

1There is also a TCP transport, but it is not deployed at MIT.
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nism, for other websites to request service tickets. It prompts the user for permission

before giving access, much like those in systems based on OAuth [19]. If the user

approves, Webathena forwards a service ticket for the application to use. Everything

is scoped to a page’s origin [3] (protocol, host, and port), the security principal used

in client-side browser security. This is summarized in figure 3-2.

Figure 3-2: An application requesting a service ticket from Webathena

3.3 Implementation

3.3.1 HTTP-to-Kerberos proxy

The proxy is implemented in Python and hosted on the scripts.mit.edu [38] ser-

vice, run by the MIT Student Information Processing Board (SIPB). It takes base64-

encoded Kerberos requests as POST data, decodes them, and sends them to the KDC.

When the KDC responds, it encodes as base64 and returns it as the HTTP response.

The proxy also handles retransmitting lost packets and cycling between different KDC
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instances using a clone of the algorithm in MIT Kerberos.

As currently implemented, the proxy itself is not quite a dumb proxy. It de-

codes and validates requests before forwarding them along. We discovered during

implementation that the MIT Kerberos KDC does not always return an error on

malformed requests. For some errors, it simply drops the packet. scripts.mit.edu

only allows a limited number of concurrent HTTP requests to a single Web applica-

tion, so Webathena’s proxy ensures that the request is well-formed before sending.

This is to prevent a denial-of-service attack on the proxy by forcing it to timeout on

bad requests. However, it does not and cannot decrypt the encrypted portions of the

request.

As a security consideration, the proxy also limits the destination of its traffic.

A completely open socket proxy could unwittingly allow outside access to machines

which treat traffic coming from, say, MIT’s network as privileged in some way. We

thus conservatively only allow traffic to Athena’s KDC.

3.3.2 JavaScript Kerberos client

On the client, Webathena consists entirely of static files which are served by a normal

Web server, in our case the Apache instance running on scripts.mit.edu. It dis-

plays a login prompt for the user which, when submitted, requests a ticket-granting

ticket from the KDC (via our proxy). MIT’s KDC requires the PA-ENC-TIMESTAMP

preauthentication method, so we implement it as well. Tickets are persisted in

localStorage.

As in a normal Kerberos implementation, the client does all the cryptography.

We two different libraries for cryptography. Kerberos’ modern encryption profiles [35]

are based on AES and SHA-1. We use the Stanford Javascript Crypto Library [40]

(SJCL) implementations of these primitives. MIT is still transitioning away from the

older profiles [36] based on single-DES and MD5, so we use the implementations in

CryptoJS [32]. Long-term, we plan to remove support for single-DES in Webathena

once MIT has completed its transition. As the Web Cryptography API [6] is finalized

and implemented, we also plan to use it where available. This will allow us to leverage
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the browser’s native cryptography implementation.

In addition to cryptographic ciphers, a Kerberos client needs access to a cryp-

tographic random number generator. Recent versions of modern browsers provide a

window.crypto.getRandomValues API [6] to provide a source of randomness, but

not all do. So instead, we use SJCL’s random number generator. This uses the native

API where available, but also incorporates entropy from as many sources as possible,

such as mouse movements and load times. I normally waits for sufficient entropy be-

fore returning bytes. The resulting user experience is poor, so we seed the generated

with entropy from the proxy.

Otherwise, the Webathena client is a normal from-scratch implementation of Ker-

beros, but in JavaScript. One component of note is our ASN.1 and DER implementa-

tion, located at web scripts/js/asn1.js in the source repository. It implementants

a JavaScript domain-specific language for transcribing ASN.1 types. The transcrip-

tions of Kerberos structures are located at web scripts/js/krb proto.js.

As proactive security measures, we configure several HTTP headers which pro-

tect against many standard Web security vulnerabilities. We enable HTTP Strict

Transport Security [22] to force SSL usage and defeat SSL-stripping attacks. We also

enable a strict Content Security Policy [4] header to mitigate any cross-site scripting

attacks. Finally, we enable the X-Frame-Options [37] header to prevent some forms

of click-jacking.

3.3.3 Credential delegation

We use Mozilla’s WinChan [21] library to implement the postMessage API. WinChan

provides an RPC interface on top of postMessage and also works around some quirks

of Internet Explorer’s implementation. To request credentials, an application opens a

window to Webathena and sends a message with a list of service principals. Webathena

then prompts the user, and, if the user allows, service tickets are sent back to the

application.

Instead of showing the full service principal name, Webathena interprets certain

well known services and displays human-friendly names for them. For instance, re-
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questing a ticket for zephyr/zephyr@ATHENA.MIT.EDU results in a prompt for

Send and receive zephyr notices as you

while host/xvm-remote.mit.edu@ATHENA.MIT.EDU gives

Access xvm-remote.mit.edu on your behalf

In addition, every prompt always includes “Learn your email address” as the user’s

Athena principal is included in the response. Figure 3-3 shows a sample permissions

prompt which requests two service principals.

Figure 3-3: A sample Webathena permissions prompt.

3.3.4 Summary

Table 3.1 summarizes the various components of Webathena. The source code is

available on GitHub at https://github.com/davidben/webathena.

Component Environment Language Lines of Code
Proxy Server Python 786
Client Browser JavaScript 4338

Table 3.1: Webathena components. Line counts do not include third-party code.
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3.4 Sample applications

We implement several proof-of-concept applications to demonstrate how Webathena

can be used to provide Web interfaces to existing Kerberos services. These are a sim-

plified Zephyr [9] notice sender, integration for Shell In A Box [18], and a remctl [30]

implementation. The source for each of these may be found in the samples directory

of the Webathena code repository. Table 3.2 summarizes these samples.

Application Language Lines of Code
zwrite.js JavaScript, some Python 287
Shell In A Box integration Python, some JavaScript 312
ctlfish JavaScript 1330

Table 3.2: Webathena sample applications

3.4.1 zwrite.js

In advance of beginning work on Roost, described in Chapter 4, we implemented

zwrite.js, a version of the zwrite utility from the Zephyr distribution which uses

Webathena.

We describe the Zephyr protocol in more detail with Roost in Chapter 4. As

zwrite.js need only send messages, it only concerns itself with a subset. Sending a

Zephyr notice consists of sending a single UDP packet to a Zephyr host manager

(zhm) running on the client’s machine. The zhm then forwards this notice to the

Zephyr servers, handling retransmits and acknowledgments. Once the server has

acknowledged the message, it is forwarded back to the client. The packet contains a

Kerberos authenticator and checksum used to authenticate the packet.

Although this was not the ultimate implementation strategy used in Roost, we

implemented zwrite.js using a variant of the proxy strategy used in Webathena it-

self. We implement a dumb server-side proxy to the zhm running on scripts.mit.edu.

This proxy receives a base64-encoded packet and forwards it to the zhm. The client-

side component requests a ticket for zephyr/zephyr@ATHENA.MIT.EDU, the service

principal used for Zephyr, and then assembles a packet to be sent out.
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There is one complication in adapting this scheme for Zephyr. One of the fields in

a Zephyr notice contains the IP address the notice was sent from. Before assembling

the packet, we query a second URL which gives the server’s IP address. That is then

assembled into the packet. Scripts is load-balanced across several IPs, but we rely

on the fact that their load-balancer pins to a particular IP until the client becomes

inactive.

3.4.2 Shell In A Box integration

We implement a second proof-of-concept application for use with Shell In A Box [18].

Shell In A Box is a Web-based terminal emulator deployed on several Athena dialup

servers to provide ssh access in the browser. It runs a command, usually ssh to

localhost, on the remote server and connects it to a JavaScript terminal emulator

running in the user’s browser.

Webathena’s Shell In A Box integration allows a user to login using their Ker-

beros credentials. Since Shell In A Box runs commands remotely on the server, this

requires a different implementation strategy. We request a ticket from Webathena, as

in zwrite.js, but serialize it and send it to the server. We then configure the server

to run a wrapper script instead of ssh directly. This script writes the ticket into a

Kerberos credentials cache and then runs ssh as before.

At MIT, users usually login to remote machines with credential forwarding. This

sends a TGT to the remote machine, allowing the user to access their networked

filesystem and other services from there. To support this use, we modify Webathena

to allow services to request a TGT instead of a service ticket. The permissions prompt

displays this request as “Full access to your Athena account” and annotates it with

a caution icon. We show a sample such prompt in figure 3-4.

3.4.3 ctlfish

As a final proof-of-concept, we implement ctlfish, a Web-based client for remctl [30].

Remctl allows a server to configure a set of commands that can be executed remotely
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Figure 3-4: A sample ticket-granting ticket request.

by an authenticated user. XVM [43], SIPB’s virtual machine service for the MIT

community, exposes a number of remctl commands to query and manipulate a user’s

virtual machines.

Remctl’s wire protocol is a straight-forward use of GSSAPI, making it an ideal

GSSAPI sample for Webathena. The protocol uses a simple framing layer to send

GSSAPI messages over a TCP socket. It first establishes a context to authenticate

the user and then uses the security layer to encrypt and authenticate all messages.

ctlfish’s design is similar to that of Webathena. Unlike Kerberos, remctl’s protocol

does not map as directly HTTP’s request/response semantics. Instead we deploy a

TCP-to-WebSockets proxy written in Node.js [34]. We use SockJS [39] to fall back to

HTTP-based long-polling techniques on browsers where WebSockets are not available.

Like the Webathena proxy, the ctlfish TCP proxy conservatively limits destinations

to a whitelist of hostnames and ports for security reasons.

We then implement a reusable GSSAPI library in JavaScript on top of the Ker-

beros libraries already written for Webathena. This library is used in conjunction with

the proxy to build a JavaScript implementation of the remctl protocol. We have de-

ployed it on Red Hat’s OpenShift platform at https://ctlfish-davidben.rhcloud.com/.

OpenShift was chosen because scripts.mit.edu does not support Node.js, and XVM

was having difficulties creating new virtual machines at the time.

Although ctlfish’s own uses are currently limited, we note that it is being used to
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build the new interface to SIPB’s SQL service, sql.mit.edu [31]. All operations for

managing a user’s databases will be exposed as remctl commands, natively accessible

via the remctl client. The Web interface will simply request tickets and act as any

other client. This achieves our ultimate goal of unified authentication for Web and

native applications to a service.
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Chapter 4

Roost

We now present Roost, our primary Webathena case study and the use Webathena was

originally conceived for. Roost is a client for Zephyr[9], a notification and messaging

service used at MIT. It receives messages on the user’s behalf and logs them to a

database to be retrieved later when the user is online. This makes Roost a particularly

interesting case for adapting to Webathena. Not only must the user delegate Zephyr

access to Roost, but this access must be persistent. We wish to receive messages

for the user while they are offline. In addition, the user must authenticate to Roost

itself for access to their logged messages, so we have the opportunity to design a

Kerberos-based authentication scheme over HTTP for a brand-new service and avoid

the proxies from our sample applications. Our solutions to these problems are very

specific to Zephyr, so we begin with an overview of Zephyr and how it is used today.

4.1 Zephyr

4.1.1 Protocol

Zephyr was originally designed as a notification system for Project Athena. Services

could broadcast status information to all subscribers or to a particular user. For

instance, a file server might notify everyone of a pending shutdown, or a print server

might inform a user their print job completed. It also served as a messaging service.
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Every notice is sent to a particular subscription triple: a class, instance, and

recipient. A class originally denoted the type of notice, such as a message, file server

notification, mail notification, etc. The instance would further categorize, such as

which file server’s status is being reported. The recipient may either be all users or a

particular user. Every client subscribes to a set of these triples. The Zephyr servers

distribute each notice to all subscribers of the relevant triple.

A notice is sent in a single UDP packet. The client assembles the message with

a set of headers followed by a body. If the body is too long, messages may be

fragmented across several notices and reassembled by the receiver. Outgoing notices

may optionally be authenticated using Kerberos. An authenticated notice contains

a Kerberos authenticator for the Zephyr service as well as a checksum keyed by the

session key in the authenticator. The Zephyr servers verify the authenticator and

checksum to verify the notice itself.

Largely as an artifact of its time, notices are not sent directly to the Zephyr

servers. Instead, every client participating in the protocol runs a Zephyr HostManager

or zhm. The zhm receives messages from clients running on that host and handles

retransmission to the Zephyr servers, instead of leaving that to the client. When the

zhm receives a notice to forward, it acknowledges with an HMACK (HostManager

ACK). Once it has received an acknowledgement from the server, it forwards a second

acknowledgement to the client, a SERVACK (server ACK).

Subscribing to a triple is implemented by sending notices to a special class, class

ZEPHYR CTL. Instead of delivering such notices, the Zephyr servers interpret them as

various control messages. These control messages, in particular, include subscription

and unsubscription requests. On a subscription request, the server extracts the session

key from the authenticator and stores it along with the subscriptions. These are

associated with the client’s host and port. (On a new subscription request from that

endpoint, it overwrites the previous key.)

On receipt of a notice, the server looks up all clients which are subscribed to

the triple and delivers the notice to each. Notices are delivered directly to clients

rather than through a zhm. On receipt of a message, the client acknowledges with a
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CLIENTACK. If the client does not acknowledge a packet, the server times out and

retransmits. After sufficiently many timeouts, the server assumes the client is offline

and cancels the client’s session.

When delivering authenticated messages to a client, the Zephyr server will look

up the stored session key and include a checksum, keyed by the session key. This

checksum allows the client to verify the notice came from the Zephyr servers. The

client trusts that the servers correctly verified the sender’s authenticator and trusts

it as authentic. Note that the client cannot verify the original notice’s authenticator

directly; Kerberos relies entirely on symmetric cryptography, and authenticators can

only be decrypted by the service they correspond to.

Figure 4-1 shows the path a notice takes when being sent from one host to another.

Figure 4-1: Overview of the Zephyr protocol
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4.1.2 Current use

Today, Zephyr has been largely repurposed as a chat system within some social groups

at MIT [42]. Classes have become analogous to chatrooms and instances topics of con-

versation. Most users access Zephyr using a terminal-based client called BarnOwl [2].

To continue receiving messages while offline, users run their BarnOwl sessions inside

a GNU Screen session [14] on a server of their choice. This is paired with a script to

regularly renew Kerberos tickets, but tickets can only be renewed for seven days, so

users must still enter their password weekly.

4.1.3 Web-based clients

When Roost was designed, there were two Web-based Zephyr clients users could use

instead of the more traditional UNIX clients. There were webzephyr [7] and Zephyr-

Plus [25]. However, because neither had access to the user’s Kerberos credentials from

within the client, they were forced to introduce alternate authentications schemes in-

stead of being compatible with the native Zephyr one.

The older client is webzephyr. Webzephyr allows users to send personal messages

to each other over Zephyr. However, it cannot subscribe to normal personal mes-

sages on users behalf. Instead, the backend subscribes to class webzephyr, recipient

daemon/webzephyr.mit.edu. It interprets the instance as the intended recipient and

delivers notices to that user via the Web interface. To integrate with normal Zephyr

clients, webzephyr also forwards notices as native personals to the user. However,

webzephyr cannot receive native personals sent by other clients.

ZephyrPlus is a more recent Web-based client. Instead of introducing an alternate

notion of personal message, it just has no support for personals and only delivers

public messages. The backend unions the subscription list of each user and subscribes

to those triples. It then delivers the relevant subset of incoming messages to each user.

However, not supporting personals still leaves some authentication issues. Messages

sent from ZephyrPlus cannot be authenticated with the user’s credentials. Instead,

they are all sent unauthenticated with the signature field set to “via ZephyrPlus”.

32



There is an ad-hoc mechanism where, whenever the ZephyrPlus backend sees an

unauthenticated message with that signature that it did not send, it responds claiming

The previous zephyr,

Message here

was FORGED (not sent from ZephyrPlus).

But this does not work for classes the backend does not subscribe to, and is far from

Zephyr’s native authentication.

The lack of Web-based clients which use native Zephyr authentication motivated

us to build Roost and, by extension, Webathena as such a client would need access

to Kerberos.

4.2 Design

Roost consists of a server-side component which subscribes to messages and logs

them into a database. We treat public and personal subscriptions separately. Public

subscriptions are deduplicated and then redistributed to users as in ZephyrPlus. This

allows us to avoid storing multiple copies of a single message. We subscribe to these

via a dedicated Kerberos principal on the backend. It is the handling of personal

subscriptions that makes Roost unique.

For each user, Roost runs an inner daemon, a small process which handles personal

subscriptions and sending messages for that user. All operations on inner daemons

require the user to staple Zephyr credentials. Inner daemons forward any received

messages back to the main server which then writes them to the database. Outgoing

messages also go through the inner daemon for authentication. Figure 4-2 shows the

possible paths for a message being delivered to Roost.

The server spawns inner daemons on-demand as it receives zephyr credentials from

users. Users may be offline for long periods of time, so inner daemons must continue

functioning on expired tickets. To preserve Zephyr sessions across server restarts and

code pushes, we serialize all inner daemon session state and restore it on startup. It
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Figure 4-2: Messages being delivered to Roost. Arrows show paths of messages trav-
eling between components.

takes around 20 minutes after missing a CLIENTACK for the Zephyr servers to time

out a session, so this preserves inner daemon sessions in most cases.

Clients communicate with Roost using an HTTP and WebSockets API. This

allows Web content to access the server directly instead of requiring the proxy schemes

of our sample applications. Other platforms do not have these restrictions, but HTTP

libraries are readily available, so implementing non-Web clients should be equally

natural.

GSSAPI is used to authenticate to the server itself. The client passes an initial

GSSAPI context token in a POST request. The server, if it accepts the authenticator,

returns an access token. To reuse existing standards, we use OAuth’s Bearer authen-

tication scheme [24] to present this access token in requests. This token lasts much

longer than the user’s ticket so users need not to re-enter their password as frequently.

4.3 Implementation

4.3.1 Subscriber

We implement Roost ’s backend using Node.js [34]. This allows us to reuse Weba-

thena’s ASN.1 implementation, but primarily it seems fitting when the rest of the
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work in this thesis is also in JavaScript. It is hosted on XVM [43] and sql.mit.edu [31],

SIPB’s virtual machine and database services, respectively.

At the core, Roost consists of a queue for messages. This queue globally orders all

received messages and inserts them into the database. The queue receives messages

from public subscriptions as well as any running inner daemons. At the other end

of the queue, we insert messages into the database in order. At insertion time,

we compute which users should see a given message by querying the subscriptions

table and log that as well. We take care to use the same algorithm for matching

subscriptions as the real Zephyr servers, including normalization of class names.

Messages are globally ordered in a single messages table on the database. We

maintain a many-to-many relation between it and the users table. Although this

does require inserting many rows per message for popular classes, it allows MySQL

to optimize read queries. We considered complex designs which computed a user’s

view based on historical subscription data, but we were unable get MySQL to index

those queries effectively.

4.3.2 Changes to libzephyr

Instead of reimplementing the Zephyr protocol in JavaScript, we wrote Node.js bind-

ings for libzephyr, the C implementation. This required several changes to fix bugs

and provide new features in the library. The first difficulty was that Node.js uses

an asynchronous single-threaded evented architecture while many of libzephyr ’s func-

tions block on the network. We use an alternate version of the ZSendNotice call,

ZSrvSendNotice, which takes a custom callback for sending packets. We pass a call-

back which simply returns all packets to JavaScript. We then send them to the zhm

asynchronously via Node’s UDP implementation and correlate the acknowledgements

ourselves. This required fixing a bug in libzephyr in the interaction between HMACK s

and the fragment reassembly code1.

For subscriptions, we expose a new call in libzephyr to provide alternate versions

1We pause to note for amusement that this bug and others fixed in Zephyr are older than the
author of this paper.
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of ZSubscribeTo and other subscription functions with a send callback parameter,

analogous to ZSrvSendNotice. But, as the number of public subscriptions grew, we

saw failures. As of writing, the server now subscribes to over 26,000 distinct triples

on startup2. First, we overflowed the operating system’s send buffer and lost packets

to the zhm. (Despite using UDP, libzephyr assumes messages sent to the local zhm

are reliable.) We also hit a bug where the zhm breaks checksums on retransmitted

packets. To resolve these, we wait asynchronously for HMACK s between packets and

run a beta version of the zhm for a fix to the retransmit bug.

Roost required further changes to libzephyr to improve the behavior of our inner

daemons. The Zephyr servers continue delivering and checksumming notices to a

session long after the credentials that created it have expired. But libzephyr never

remembers the key for the checksums. Rather, it queries the user’s credential cache

each time it verifies one. First, this means that messages fail to authenticate after the

cache changes if subscriptions are not refreshed. Second, when credentials expire, it no

longer finds the key and messages again fail to authenticate. We fix this by patching

libzephyr to save all keys from subscription notices. We then add a conservative

heuristic for when to retire them from memory. Among many deficiencies in the

Zephyr protocol is that it is not explicit which key is current on the server, so we

resort to heuristics based on received messages.

Since we expected to regularly deploy new versions of Roost, especially in early

development, it was important to maintain inner daemons across code pushes. UDP

is connectionless, so we simply never tear down sessions for inner daemons. We

patch libzephyr to include two functions ZDumpSession and ZLoadSession. These,

respectively, serialize and restore the port number and all keys of the Zephyr session.

Roost regularly requests the inner daemons to serialize their state. On startup, this

state is loaded up again. Provided our uptime is such that the servers never expire our

sessions, we can retain inner daemon sessions across code pushes and even reboots.

To detect when a session has expired, we regularly ping inner daemons by sending to

a special triple and expecting the notice to come back authenticated.

2This largely the work of one or two users rather than a reflection of Roost ’s activity.
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4.3.3 Public API

Clients query Roost using an HTTP and WebSockets-based API. Authentication is

based on GSSAPI. The client POST s a GSSAPI token and the server responds with

a bearer token good for a month. Note that, although GSSAPI in general may require

multiple exchanges to tokens to fully establish a context, the Kerberos mechanism

requires only one exchange. This simplifies the server in that we do not need to

maintain incomplete contexts as state. To implement this, we wrote bindings to the

system GSSAPI libraries. That we can use these bindings with ctlfish’s JavaScript

version further demonstrates the interoperability between our various Kerberos im-

plementations.

The primary call in the Roost API is the message querying call. It takes an anchor

point, a count of messages, a direction (forwards or backwards), and an optional filter.

This queries the database for the next batch of messages after the anchor, subject

to the filter. The query also has a WebSocket-based version, which, as in ctlfish, we

implement with SockJS [39] for compatibilty with older browsers. The WebSockets

variant streams messages in realtime if the anchor point is near the end. The count

may be increased as the user scrolls. We calls these queries tails. They start from an

anchor point and stream messages starting from that anchor.

Although messages are globally ordered, we do not send their indices to the client.

This is to avoid leaking information about messages received by other users. Instead,

messages are sealed by encrypting the counter a single AES block with some secret

key. We chose this scheme just to avoid maintaining a mapping in the database

from opaque identifiers to indices. This does have the side effect that clients cannot

compare two identifiers, but this has not proved too problematic.

To allow hosting Web-based clients on different origins from the server, we use

Cross-Origin Resource Sharing [26] (CORS) and allow any origin to access the API.

Access tokens are manually attached via OAuth bearer tokens [24] rather than stored

in cookies, so there is no danger of the usual Cross-Site Request Forgery attacks. As a

practical measure, we avoid any parts of CORS which require a preflight request. This
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is both for performance on browsers which support CORS and to support Internet Ex-

plorer 9. Internet Explorer 9 supports a predeceder of CORS, XDomainRequest [28].

XDomainRequest is much more limited and cannot use features which would require

a preflight in CORS, such as custom headers or methods. We do not support Internet

Explorer 8 and earlier.

4.3.4 Clients

We implement two clients: an official Web-based interface to the service and an small

script to import subscriptions stored on Athena.

The Web interface is intended to be a full-featured Zephyr client. As of writ-

ing, the user interface is still incomplete, but it is functional enough to have largely

replaced BarnOwl in the author’s usage of Zephyr. The backend and Kerberos

portions are fully functional. The interface consists only of static files, hosted on

scripts.mit.edu [38]. It is deployed at https://roost.mit.edu. We use the tail APIs

in the server to implement a bidirectional infinite scroll. As the user scrolls up, we

request more messages from the top and retire messages from the bottom. As the user

scrolls down, we request more from the bottom and retire from the top. This gives

the appearance of scrolling through the user’s entire message list while only keeping

a constant window in memory.

The import script is implemented in Python. Instead of using custom Kerberos

and GSSAPI code, we use the native system Kerberos and GSSAPI libraries. These

are accessed with the ctypes module. The import script parses the user’s subscrip-

tions stored on Athena and uploads them to Roost, along with zephyr credentials. We

host the import script in our Athena locker, as is the standard practice for software

on Athena.

We believe this import script demonstrates an important point about Roost. The

server is not specific to Webathena. It is a Kerberos-based service which authenti-

cates via GSSAPI like many other services and is accessed via the platform’s native

Kerberos libraries. The Web has none, so we provide one in Webathena for the offi-

cial client, but a Python client using MIT Kerberos libraries can access Roost just as
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naturally as the Web interface does.

4.3.5 Summary

We summarize Roost ’s many components in table 4.1.

Component Description Language Lines of Code
node-zephyr Node.js bindings for libzephyr C++, JavaScript 1074
node-gss Node.js bindings for GSSAPI C++, JavaScript 1011
roost Roost server component JavaScript 4319
roost-client Web-based Roost client JavaScript 4843
roost-python Import tool and support code Python 1089

Table 4.1: Roost components. Line counts do not include third-party code or code
pulled from Webathena.
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Chapter 5

Related Work

5.1 OAuth

Many services deployed natively on the Web today have similar systems for delegating

access to other applications. Many of them, such as those run by Google, Facebook,

and Dropbox, use the OAuth [19] authorization framework. OAuth provides a mech-

anism for a client to receive an opaque access token for a particular resource server.

This token is only given after user permission and is scoped to certain interactions

with the resource. OAuth also introduces a refresh token which may be exchanged

for renewed access tokens when persistent access to a service is needed.

The design of OAuth deeply influenced Webathena. However, we opted not to use

OAuth itself as we were interested in delegating credentials between purely client-

side Web applications. OAuth makes extensive use of HTTP redirects which would

inadvertently send information to servers hosting our applications. We plan to inves-

tigate adapting Google’s postMessage-based OAuth flow [16] for a future iteration

of Webathena.

5.2 HTTP Negotiate

The HTTP Negotiate authentication mechanism [23] provides GSSAPI-based au-

thentication to HTTP servers. It uses the SPNEGO [45] GSSAPI mechanism which
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negotiates the use of another GSSAPI mechanism. HTTP Negotiate is deployed at

MIT for access to some services, but browser support is imperfect.

We considered adopting it for Roost, but it is not suitable for use in JavaScript.

Using SPNEGO requires additional token exchanges to establish a context, but Ne-

gotiate simply associates the incomplete GSSAPI contexts with the TCP or TLS

connection. Browser APIs do not provide control over how requests map to connec-

tions, so any scheme which associates state with the connection itself is problematic.

5.3 scripts.mit.edu

SIPB’s scripts.mit.edu [38] service allows members of the MIT community to host

dynamic websites out of their Athena file locker. Like our work, it needs limited access

to the user’s services on Athena, namely their files. Athena uses the Andrew File

System (AFS) which provides mechanisms for access controls. Rather than delegate

tickets, scripts.mit.edu provides sign-up utilities which gives the service access to

certain directories in the user’s locker.

This mechanism is specific to AFS, one of many different services accessible by

Kerberos, but demonstrates another means of access delegation on Athena.

5.4 Zulip

While Roost was being conceived and implemented, several MIT alumni began a

startup, Zulip, to build a Zephyr-like messaging system for internal use at companies.

To test their product, they provide Zephyr integration for MIT use. Zulip handles

public subscriptions similarly to ZephyrPlus and Roost. For personal subscriptions

and authenticating outgoing messages, it requires users to run a mirroring script

to forward personals and send authenticated notices. It must be run on a long-

running dialup server and supplied up-to-date Kerberos tickets. This mirroring script

is analogous to Roost ’s inner daemons. But because we can delegate credentials, our

service can run the mirroring script equivalent internally.
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Chapter 6

Discussion and Future Work

To evaluate Webathena itself, we demonstrated how to use it to build applications

which access existing Kerberos services at MIT. These have been detailed exten-

sively in chapters 3 and 4. But more generally, by adapting Kerberos to the Web,

we introduced a new model for Kerberos for untrusted applications, giving it secu-

rity properties different from a traditional Kerberos deployment. We now discuss

our overall Web-based Kerberos ecosystem as well as possible directions for future

improvement.

6.1 Client code integrity

Deploying Webathena as normal Web application allowed for maximum compatibility

with existing Web browsers, but we now inherit the security properties of a Web

application. The browser regularly downloads JavaScript from the Internet, so we

must trust our server, namely scripts.mit.edu, as well as SSL and the CA system to

be sure we are running the correct JavaScript code. This is unavoidable in the Web

today, although schemes such as public key pinning [27, 11] mitigate this somewhat.

In contrast, a native Kerberos implementation is less reliant on SSL and online

servers. While the initial download will anchor its trust eventually on SSL or a

similar public key infrastructure, this trust is limited to the initial download. From

there, updates can be signed by offline keys specific to Kerberos. The Web lacks this
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statefulness and must trust SSL on every visit.

Instead of a Web application, we could deploy Webathena as a browser exten-

sion, like a Chrome extension [17] to augment the existing deployment. (The existing

deployment should be kept for maximum compatibility.) Browser extensions are in-

stalled locally and updated by the browser vendor. In the case of Chrome extensions,

updates are also signed by an extension-specific key. One difficulty in deploying

an extension would be allowing other applications to discover the installed extension.

Unlike other applications which take this approach, such as Cryptocat [5], Webathena

provides an external API for other websites.

Alternatively, instead of abandoning Web applications, browsers could be modified

to provide stronger code signing. Webathena’s client consists entirely of static content.

We could sign this content offline with some dedicated keypair. The browser would

be given the public half using a stateful mechanism, similar to public key pinning [11].

The server could include our key in a header which the browser would remember for

the origin. Subsequent accesses would require a signature from this key. This limits

our reliance on the CA system and even the live server to the first visit. However,

as in key pinning, a misplaced code-signing header would disable Webathena in all

supporting browsers.

6.2 Credential delegation

Although Webathena loses some security by being a Web application, we gain in

security with our credential delegation scheme. Unlike their native counterparts,

Webathena applications are not trusted with the user’s full credentials. Programs

like the official remctl client, BarnOwl, etc., have access to not only the host system,

but also the user’s TGT. A vulnerability in BarnOwl can be exploited to gain access

to the user’s files, the groups they administer, their email, and all other services on

Athena. The Webathena counterparts are much more limited. Roost is, by necessity,

trusted with zephyr credentials, but has no access to files or other services. Likewise,

ctlfish requires user permission to access each remote machine individually, so the
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user can limit its access.

6.2.1 Android

Webathena’s delegation scheme could be extended to other platforms, such as An-

droid. Android applications may access low-level networking functions, so we have no

need of our proxies, but, like the Web, Android applications run in a sandboxed envi-

ronment. The MIT Kerberos Consortium has begun a port of Kerberos to Android,

but it is not yet usable as a complete solution for applications.

We propose that the Kerberos for Android implement a similar trusted creden-

tial manager as Webathena. The Android platform provides an AccountManager [15]

framework which allows applications to implement custom account types. Account

managers expose an interface similar to OAuth and may present the user with permis-

sions prompts. Webathena’s semantics could be mapped onto these, thus providing

users with access to Kerberos-authenticated services on their phone with the security

benefits of our delegation scheme.

6.2.2 Finer-grained delegation

While our scheme is an improvement over a traditional Kerberos library, we can only

delegate access at a service-level granularity. This is appropriate for Zephyr, but more

complex services may benefit from finer-grained delegation. For instance, delegating

tickets to AFS gives access to all of a user’s files on Athena, while an application may

only need access to a single file or directory or perhaps only read access without write

access.

We could solve this by using the AuthorizationData field in the encrypted portion

of a Kerberos ticket. This is an extensible field for adding restrictions to a ticket.

When requesting a service ticket, clients may request restrictions be appended to

those in their TGT. We would introduce a new AuthorizationData type to act as an

equivalent to the scope parameter in OAuth. Services would interpret this field and

limit access accordingly. For instance, Moira could interpret it as whether the client
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may administer or only query a user’s mailing lists, depending on this field.

One difficulty would be in displaying this scope to the user. Webathena could

be hard-coded to interpret the service-specific scopes for services it knows about.

Unknown restrictions would not be displayed and prompt for stronger access than

will actually be given. Alternatively, we could standardize a scheme for Webathena

to communicate with the services about how to present these to the user.

6.3 Native Kerberos integration

Although Webathena can acquire Kerberos tickets directly in the browser, many users

may access services using native Kerberos libraries outside the browser as well. For

instance, a user on an Athena cluster machine already has Kerberos tickets in their

login session. In addition, some security-conscious users expressed discomfort at

entering passwords into a browser window. Allowing Webathena to integrate with

the host system’s credential store would thus be valuable.

As Web content cannot access the host system’s files, this would require exposing

the host credential cache to the browser. Some possibilities include a unsandboxed

native-code browser plugin, browser extensions, or a local HTTP server which some-

how communicates securely with Webathena’s web content. The last option may be

problematic on multi-user machines as other users may communicate with the server

as well.

Alternatively, we could also provide a script which serializes the user’s TGT in a

format suitable for pasting into a form on Webathena. However, this is unlikely to be

usable by anyone other than advanced users.

6.4 Persistent access and revocation

We believe ticket lifetimes in Kerberos are not ideal for today’s computing envi-

ronment. As deployed at MIT, Kerberos limits ticket lifetimes to just under a day

(specifically, 21 hours and 15 minutes) and may be renewed up to one week. This
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causes Webathena some difficulties.

Several users of Roost commented that Webathena requests the user’s password

too frequently. We currently do not implement ticket renewal, so users must enter

their passwords daily to send messages. When Kerberos was designed, users were

expected to use various cluster machines, log in for a short session, and log back out.

A lifetime of one day was perfectly adequate. Today, people have personal machines

and month-long login sessions are feasible.

Delegating persistent access to a service can also be difficult in Webathena. We

achieve it in Roost by serializing Zephyr sessions, but by using what is arguably a

flaw in the protocol. The Zephyr servers should expire sessions when the tickets that

create them expire. It is also impossible to revoke access if a user decides they no

longer trust Roost with their Zephyr credentials.

6.4.1 Ticket renewal

Renewing tickets would increase decrease password prompts to weekly, matching

BarnOwl usage, but this is still frequent compared to login forms on the Web. More-

over, tickets may only be renewed while they are unexpired, so the user must visit

Webathena daily so that the renewal code can run. As it is only a login portal, this

is unrealistic. One possibility is to include a page for Roost to embed in an invisible

iframe which repeatedly renews tickets, however this still assumes the user visits

Roost, or some other Webathena application, regularly. We could also investigate

using Kerberos’ postdated ticket mechanism and request enough to cover the entire

window. This does, however, defeat the purpose of ticket renewal.

Moreover, even with ticket renewal, we could not delegate persistent access to

services to applications. Although a long-running server like Roost can easily renew

tickets regularly, this still only lasts for a week. Requiring the user to visit Roost

weekly or lose subscriptions, in a hypothetical Zephyr which more readily expired

sessions, would also be unacceptable.
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6.4.2 Ticket revocation

The simplest solution would be to significantly increase the lifetime of Kerberos tick-

ets, or at least their renewal time, but this lifetime is too closely tied to revocation

in Kerberos. If a user changes their password, the old one can no longer be used to

acquire tickets. However, existing tickets continue to be usable. Kerberos conflates

two parameters: how often must the user enter their password and how long before

a password revocation propagates.

For service tickets, it is reasonable that they are difficult to revoke. Using a

service ticket does not require either party to communicate with the KDC. This is a

convenient property and, more importantly, we cannot change this without breaking

existing services. However, exchanging a TGT for a service ticket by necessity involves

the KDC. It is very natural to check for revocation here, but tickets do not contain

information about which version of the password produced them.

We propose to add a new AuthorizationData type to Kerberos which contains the

version number of the client’s password which was used to create this TGT. This

restriction would mean that the ticket is only valid as long as that version number

was up-to-date. The KDC, when acting on a TGT or renewing a service ticket would

refuse to honor the request if the password had since been changed.

With this change, TGT lifetimes may safely be increased without affecting revo-

cation. In fact, we would decrease the propagation time for revocation. Tickets can

be renewed, so it is possible for a compromised password to remain in use for up to

a week. In our scheme, because renewals also get revocation checks, the propagation

time is only one day. Note that service ticket lifetimes must still be limited as their

uses do not check for revocation. We can, however, increase their renewal time and

thus provide a way to delegate long-lived credentials for Roost and other applications.

6.5 Constrained ticket-granting-tickets

Finally, we propose another scheme for delegating persistent access that we believe

fits more naturally into Kerberos. While infinitely renewable service tickets would
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allow persistent delegation of credentials, they must be regularly renewed before they

expire. Servers can be expected to be online, so this is not a serious constraint, but

it does impose liveness requirements on all applications. More fundamentally, there

is an asymmetry in cloud applications using renewable service tickets for persistent

access and the user using a TGT for persistent access.

We propose instead to reuse the mechanism proposed in 6.2.2 to constrain TGTs

as well. We call these constrained TGTs. A constrained TGT can only request

tickets for certain services, along with an instance of those services’ own constraints.

We would then implement all persistent delegation in Webathena as forwarding TGTs

constrained to the services requested.

Constrained TGTs unify Webathena’s service-ticket-based credential delegation

with Kerberos as used today. Servers acting on behalf of a user now act identically

to a user’s native login session. It would allow us to seamlessly reuse all the existing

Kerberos infrastructure for delegating unconstrained TGTs and provide the security

benefits we gain in Webathena. A user may run BarnOwl on a remote dialup server,

but forward a TGT constrained to Zephyr and any other Athena services needed by

BarnOwl. With no changes to existing services, we will have transplanted Roost ’s

security properties to BarnOwl while remaining compatible with SSH credential del-

egation and existing client software for consuming tickets.
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Chapter 7

Conclusions

In this thesis, we have presented Webathena, an adaptation of the Kerberos network

authentication protocol to the Web. Using proxies, Webathena implements a native

Kerberos client for the browser as a standard Web application without requiring

additional capabilities. In doing so, we design a new model for limited credential

delegation in Kerberos to better serve today’s computing environments.

We demonstrate how Webathena can be used with existing Kerberos services at

MIT by building simple clients for Zephyr, SSH, and remctl. Then, in Roost, we

build a new service which both interacts with an existing Kerberos service and, while

independent of Webathena itself, is designed with an eye for native Web compatibil-

ity. These clients improve upon the security of the traditional Kerberos ecosystem

by restricting access to the user’s credentials. Moreover, we achieve this without

modifications to browsers or existing Kerberos infrastructure.

Finally, we propose modifications to the Kerberos protocol to better unify our

new model with existing Kerberos infrastructure.
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Appendix A

Webathena API

The Webathena API contains a single API call, accessed using Mozilla’s WinChan

library, at the URL https://webathena.mit.edu/#!request ticket v1. The

relay url parameter to WinChan is https://webathena.mit.edu/relay.html. It

takes a parameters dictionary with a single key, services. This key contains an array

of service principals the that the website is requesting. Each service principal is a

dictionary containing two keys:

realm The realm of the service as a string.

principal The principal name of the service. This is specified as an array of strings,

each containing a component of the principal name, pre-parsed.

As an example, the principal HTTP/roost-api.mit.edu@ATHENA.MIT.EDU would

be represented as

{

"realm": "ATHENA.MIT.EDU",

"principal": [

"HTTP",

"roost-api.mit.edu"

]

}
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Webathena responds with a dictionary containing a key status. It has three

possible values:

OK The user approved the permission grant. The dictionary contains a second

key, sessions, with Kerberos service sessions corresponding to each of those

requested.

DENIED The user did not approve the permissions grant.

ERROR The request was malformed.

Service sessions are included as JSON objects with the following keys, made to

mirror the ASN.1 definitions of the KDC-REP and EncKDCRepPart structures in the

Kerberos protocol.

crealm The client realm as a string.

cname The client principal name as a Kerberos PrincipalName.

ticket The ticket as a Kerberos Ticket.

key The session key as a Kerberos EncryptionKey.

flags The ticket flags as an array of ones and zeros.

authtime The ticket authtime as a JavaScript Date.

starttime Optional; the ticket starttime as a JavaScript Date.

endtime The ticket endtime as a JavaScript Date.

renewTill Optional; the ticket renew-till time as a JavaScript Date.

srealm The server realm as a string.

sname The server principal name as a Kerberos PrincipalName.

caddr Optional; The ticket’s host addresses as a Kerberos HostAddresses.
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Where reference is made to ASN.1 structures in Kerberos, we use a straight-

forward serialization of the ASN.1 structure into JSON. Primitive types map to their

corresponding JSON type. We encode OCTET STRING in base64. A SEQUENCE maps

to a dictionary, and SEQUENCE OF maps to an array. We refer to the

web scripts/js/krb proto.js file in the Webathena source tree for our canonical

versions of these structures.

The web scripts/js/webathena.js library in the Webathena source tree in-

cludes a krb.Session.fromDict API which wraps this object in a convenience class

and implements various functions for use it with. We recommend client applications

needing to interpret the ticket use this library along with its dependencies, also found

in Webathena’s source tree.

q.min.js The Q promises library

sjcl.js The Stanford Javascript Crypto Library

tripledes.js The tripledes.js “rollup” bundle in CryptoJS. We use the MD5 and

DES implementations in CryptoJS for some legacy cipher profiles in Kerberos.

For the functions provided in webathena.js, we refer to the web scripts/js/krb.js

file in the Webathena source tree.

Webathena also includes a GSSAPI implementation, web scripts/js/gss.js,

which builds on webathena.js.
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Appendix B

Sample Code

Below is a code sample from ctlfish, demonstrating the use of the cross-origin We-

bathena API. It uses the Q promises library to simplify asynchronous programming,

but this is not necessary to use Webathena.

var ccache = { } ;

f unc t i on ge tCreden t i a l ( peer ) {

var key = peer . p r i n c i p a l . t oS t r i ng ( ) ;

i f ( ccache [ key ] )

r e turn Q. r e s o l v e ( ccache [ key ] ) ;

var d e f e r r e d = Q. d e f e r ( ) ;

WinChan . open ({

u r l : WEBATHENA HOST + ”/#! r e q u e s t t i c k e t v 1 ” ,

r e l a y u r l : WEBATHENA HOST + ”/ r e l a y . html ” ,

params : {

s e r v i c e s : [{

realm : peer . p r i n c i p a l . realm ,

p r i n c i p a l : peer . p r i n c i p a l . principalName . nameString

} ]

}
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} , f unc t i on ( err , r ) {

i f ( e r r ) {

d e f e r r e d . r e j e c t ( e r r ) ;

r e turn ;

}

i f ( r . s t a t u s !== ”OK”) {

d e f e r r e d . r e j e c t ( r ) ;

r e turn ;

}

var s e s s i o n = krb . Se s s i on . fromDict ( r . s e s s i o n s [ 0 ] ) ;

ccache [ key ] = s e s s i o n ;

d e f e r r e d . r e s o l v e ( s e s s i o n ) ;

} ) ;

r e turn d e f e r r e d . promise ;

}
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Appendix C

Testimonials

For additional clarity and insight into this work, we present here a number of testi-

monials gathered during discussions of the design and implementation of Webathena,

reproduced in their original form.

“ You may have noticed that davidben is above-average crazy even for

Zephyr :)

Nelson Elhage ”
“ Why . . . are you doing this

Nelson Elhage ”
“ Please tell me you’re not trying to implement kerberos in Javascript

Nelson Elhage ”
“ You have to admit it’s something davidben would do.

Adam Glasgall ”
“ You have . . . interesting . . . ideas of ‘fun’.

Benjamin Kaduk ”
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“ I’m torn between congratulating you and worrying about your mental

health.

Adam Glasgall ”
“ it has LEGS and it’s LOOKING AT ME

Alioth Drinkwater ”
“ Congrats, and you’re insane.

Nelson Elhage ”
“ okay, less trolling davidben, moar coding

Geoffrey Thomas ”
“ Don’t give him more ideas, man.

Adam Glasgall ”
“ The great thing about davidben is that if you leave him alone long enough,

he just starts trolling himself.

Nelson Elhage ”
“ What are you. . . maybe I shouldn’t ask.

Alan Huang ”
“ As a wise man once said: “Congratulations, and you’re insane.”

Alan Huang ”
“ If I didn’t already think you were dangerously insane. . .

Adam Glasgall ”
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“ I thought the general consensus was that you were already insane, so.

Geoffrey Thomas ”
“ That’s an interesting definition of “fun” you have there.

Adam Glasgall ”
“ Kerberos in Javascript sounds slightly insane.

Benjamin Tidor ”
“ davidben is slightly insane.

Alex Dehnert ”
“ As mentioned before, davidben is slightly insane.

Adam Glasgall ”
“ . . . did you just implement gssapi in javascript?

Adam Glasgall ”
“ . . . david I worry about your sanity

Di Liu ”
“ Please don’t tell me this is going to end up with kerberized webathena

jabber

Alex Chernyakhovsky ”
“ please tell me that is made up

Joshua Pollack ”
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“ davidben is gloriously insane.

Adam Glasgall ”
“ David, what are you doing?

Adam Glasgall ”
“ David’s so insane, he’s on there *twice*.

Alan Huang ”
“ All right, I am ready to start acknowledging your insanity.

Victor Vasiliev ”
“ David is insane.

Jennifer Wang ”
“ . . . um

Geoffrey Thomas ”
“ hold on, my brain is exploding

Justin Dove ”
“ Oh my god, this thing does work.

Victor Vasiliev ”
“ i dare you to incldue that.

Cassandra Xia ”
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